Anisotropic double?Gaussian analytical wake model for an isolated horizontal?axis wind turbine
نویسندگان
چکیده
An anisotropic double Gaussian (DG) model for analytical wake modeling to predict the streamwise velocity behind an isolated non-yawed horizontal-axis wind turbine is proposed. The proposed based upon conservation of mass and momentum inside a streamtube control volume. growth rate parameters distinguish expansion between lateral vertical directions were tuned on numerical measurement data utility-scale turbines. It was found that can give feasible predictions within full-wake region under different inflow conditions. In addition, other models top-hat shape single approaches evaluated comparison. root-mean-square error statistical analysis used evaluate performance each examined flow general, outperformed in all categories, particularly near-wake onset far-wake region, which are beyond scope conventional approach modeling. This advantage gives potential provide better prediction estimation tightly packed farms.
منابع مشابه
A semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. The pr...
متن کاملA semi-analytical model for velocity profile at wind turbine wake using blade element momentum
The shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. In reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a S-shape profile. Th...
متن کاملa semi-analytical model for velocity profile at wind turbine wake using blade element momentum
the shape of wake behind a wind turbine is normally assumed to have a hat shape for the models used in wind farm layout optimization purposes; however, it is know from experimental tests and numerical simulations that this is not a real assumption. in reality, the results of actual measurements and detailed numerical simulation show that the velocity in wake region has a s-shape profile. the pr...
متن کاملCFD Wake Modelling with a BEM Wind Turbine Sub-Model
Modelling of wind farms using computational fluid dynamics (CFD) resolving the flow field around each wind turbine’s blades on a moving computational grid is still too costly and time consuming in terms of computational capacity and effort. One strategy is to use sub-models for the wind turbines, and sub-grid models for turbulence production and dissipation to model the turbulent viscosity accu...
متن کاملEffects of Freestream Turbulence in a Model Wind Turbine Wake
The flow structure in the wake of a model wind turbine is explored under negligible and high turbulence in the freestream region of a wind tunnel at Re ∼ 7× 104. Attention is placed on the evolution of the integral scale and the contribution of the large-scale motions from the background flow. Hotwire anemometry was used to obtain the streamwise velocity at various streamwise and spanwise locat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Energy Science & Engineering
سال: 2022
ISSN: ['2050-0505']
DOI: https://doi.org/10.1002/ese3.1120